JoyCaption:从零开始构建的免费、开放且未经审查的视觉语言模型

JoyCaption,一个从零开始构建的免费、开放且未经审查的视觉语言模型(VLM),旨在助力社区训练SD或Flux模型。它不仅免费开放,还提供训练脚本和丰富的构建细节,就像bigASP一样。

ComfyUI节点:

目前有多款节点支持JoyCaption,大家可以根据自己的需求进行选择。

特点概览

  • 自由和开放:免费发布,无限制权重,附带训练脚本。
  • 内容无审查:平等覆盖适宜和不适宜的内容,不回避任何概念。
  • 多样性:欢迎各种风格和内容,无论是数字艺术、照片般真实、动漫还是Furry,JoyCaption都适合每个人。
  • 最小过滤:训练了大量图像,以理解我们世界的几乎所有方面,除了非法内容。

最新动态

自Pre-Alpha版本发布以来,作者根据社区反馈进行了多项改进,包括扩展数据集,增加了对动漫/电子游戏角色、经典艺术、电影名称等的识别能力。

新功能

  • 控制字幕长度:现在可以控制JoyCaption生成的字幕长度,从20到260个词,或选择“任何”长度。
  • 风格选择:可以选择与Pre-Alpha版本相同的正式风格,或尝试新的“非正式”风格。
  • 字幕类型:新增“描述性”和“训练提示”两种字幕类型,后者尝试模仿用户编写稳定扩散提示的方式。

开发细节

过去一个月,作者手动编写了2000个训练提示字幕,尽管遇到挑战,但这些努力带来了新的字幕长度和语调控制功能。

警告

  • 训练提示模式:仍在完善中,使用时需谨慎。
  • 非正式风格:虽然有助于扩展模型的词汇,但风格上仍有改进空间。
  • 数据集扩展:虽然在电影、艺术和角色识别方面有所改善,但OCR和艺术家识别方面仍需加强。
0

评论0

没有账号?注册  忘记密码?